Global Regularity of Invariant Measures

G. Metafune^{*} D. Pallara[†] A. Rhandi[†]

1 Introduction.

In this talk I present some global regularity properties of invariant measures associated with secondorder elliptic partial differential operators in \mathbb{R}^N

$$A = \sum_{i,j=1}^{N} D_i(a_{ij}D_j) + \sum_{i=1}^{N} F_iD_i = A_0 + F \cdot D.$$
(1.1)

We assume that there exists a Borel probability measure μ on \mathbf{R}^N such that

$$\int_{\mathbf{R}^N} A\phi \, d\mu = 0 \tag{1.2}$$

for every $\phi \in C_c^{\infty}(\mathbf{R}^N)$. If the operator A, endowed with a certain domain D(A), generates a semigroup $(T(t))_{t\geq 0}$ in a suitable function space X, then (1.2) holds for every $\phi \in D(A)$ if and only if

$$\int_{\mathbf{R}^N} T(t) f \, d\mu = \int_{\mathbf{R}^N} f \, d\mu \tag{1.3}$$

for every $f \in X$ and $t \ge 0$ and this means that the measure μ is an invariant distribution for the Markov process described by (A, D(A)). For this reason a probability measure μ satisfying (1.2) is called *invariant*, even though no semigroup explicitly appears.

In order to describe the main results, let us state precisely our assumptions on the coefficients of A.

(H0)
$$a_{ij} = a_{ji}, F_i : \mathbf{R}^N \to \mathbf{R}$$
, with $a_{ij} \in W^{1,p}_{loc}(\mathbf{R}^N), F_i \in L^p_{loc}(\mu)$ for some $p > N$ and

$$\sum_{i,j=1}^{N} a_{ij}(x)\xi_i\xi_j \ge \lambda |\xi|^2$$

for every $x, \xi \in \mathbf{R}^N$ and a suitable $\lambda > 0$.

(H1) For every
$$i, j = 1, ..., N$$
, $(1 + |x|^2)^{-1}a_{ij} \in L^1(\mu)$ and $(1 + |x|)^{-1}D_i a_{ij} \in L^1(\mu)$

(H2) $F \in L^1(\mu)$.

^{*}Dipartimento di Matematica "Ennio De Giorgi", Università di Lecce, C.P.193, 73100, Lecce, Italy. e-mail: giorgio.metafune@unile.it, diego.pallara@unile.it

[†]Department of Mathematics, Faculty of Science Semlalia, Cadi Ayyad University, B.P. 2390, 40000, Marrakesh, Morocco. e-mail: rhandi@ucam.ac.ma

Notice that neither the matrix (a_{ij}) nor the drift $F = (F_1, \ldots, F_N)$ are assumed to be bounded in \mathbf{R}^N . Note also that (H1) is always satisfied if the a_{ij} grow at most quadratically and their gradients at most linearly at infinity. As regards the local regularity of the coefficients, we point out (H0) guarantees that μ is given by a positive density $\rho \in W_{loc}^{1,p}(\mathbf{R}^N)$; in particular, ρ is a continuous function.

In our first result we show global boundedness of the density ρ , under suitable integrability conditions of the coefficients of the operator A with respect to ρ itself. These conditions are easily verified using Lyapunov functions techniques. The proof relies upon Moser's iteration technique. Sobolev regularity results are then deduced assuming that $a_{ij} \in C_b^1(\mathbf{R}^N)$.

We also prove a Harnack-type inequality for ρ finding explicit bounds on its logarithmic derivative. These bounds are then used to obtain sufficient conditions under which $D\rho/\rho$ belongs to $L^{p}(\mu)$ for $1 \leq p < \infty$.

Finally, we prove both upper and lower bounds on ρ assuming that certain exponentials are integrable with respect to μ . Basically we show that if $\exp\{\delta|x|^{\beta}\}$ belongs to $L^{1}(\mu)$ for some $\delta, \beta > 0$, then $\rho(x) \leq c_{1} \exp\{-c_{2}|x|^{\beta}\}$ for related constants $c_{1}, c_{2} > 0$. Explicit conditions for the integrability of the above exponentials are given. Lower bounds for ρ are deduced from the Harnack inequality assuming growth conditions of polynomial type on the coefficients. Combining upper and lower bounds, the precise decay of ρ is given for a class of operators.