Analytic Semigroups Generated by Elliptic Operators with Boundary Degeneration of First Order

Diego Pallara

Dipartimento di Matematica "Ennio De Giorgi" Università di Lecce.

(Joint work with S. Fornaro, G. Metafune, J. Prüss)

Let Ω be a bounded open subset of \mathbf{R}^N with smooth boundary, ϱ the (smoothed) distance from $\partial\Omega$, and $a = (a_{ij})$ a uniformly elliptic matrix with continuous entries. Define the operator

$$A = -\varrho(x) \sum_{i,j=1}^{N} a_{ij}(x) D_{ij} + \sum_{i=1}^{N} b_i(x) D_i,$$

with b_i continuous, introduce the domains

$$D_p(A) = \left\{ u \in W^{2,p}_{\text{loc}}(\Omega) \cap W^{1,p}_0(\Omega) : \varrho D^2 u \in L^p(\Omega) \right\}, \quad 1
$$D_0(A) = \left\{ u \in C(\overline{\Omega}) \cap \bigcap_{1 \le p < \infty} W^{2,p}_{\text{loc}}(\Omega) \,|\, \sqrt{\varrho} \,\nabla u, \, Au \in C(\overline{\Omega}), \, u_{|\partial\Omega} = 0 \right\}$$$$

and set

$$\delta := \min_{\xi \in \partial \Omega} \langle b(\xi), \nu(\xi) \rangle \langle a(\xi) \nu(\xi), \nu(\xi) \rangle^{-1}.$$

We prove that $(-A, D_p(A))$ generates an analytic semigroup in $L^p(\Omega)$, provided that $\delta > -1/p$, and that $(-A, D_0(A))$ generates an analytic semigroup in $C(\overline{\Omega})$, provided that $\delta > -1/2N$.